Bayesian Alignment of Similarity Shapes.

نویسندگان

  • Kanti V Mardia
  • Christopher J Fallaize
  • Stuart Barber
  • Richard M Jackson
  • Douglas L Theobald
چکیده

We develop a Bayesian model for the alignment of two point configurations under the full similarity transformations of rotation, translation and scaling. Other work in this area has concentrated on rigid body transformations, where scale information is preserved, motivated by problems involving molecular data; this is known as form analysis. We concentrate on a Bayesian formulation for statistical shape analysis. We generalize the model introduced by Green and Mardia for the pairwise alignment of two unlabeled configurations to full similarity transformations by introducing a scaling factor to the model. The generalization is not straight-forward, since the model needs to be reformulated to give good performance when scaling is included. We illustrate our method on the alignment of rat growth profiles and a novel application to the alignment of protein domains. Here, scaling is applied to secondary structure elements when comparing protein folds; additionally, we find that one global scaling factor is not in general sufficient to model these data and, hence, we develop a model in which multiple scale factors can be included to handle different scalings of shape components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape Similarity by Piecewise Linear Alignmentz

A key problem when comparing planar shapes is to locate corresponding reference points, such as inflection or high curvature points. High curvature points are to be preferred, since they are psychophysically more important and are shown to be computationally more reliable. Using a scale-space of curves such ‘corners’ are located, and an empirical analysis demonstrates that high curvature points...

متن کامل

Parallelizing the Smith-Waterman Local Alignment Algorithm using CUDA

Given two strings S1 = pqaxabcstrqrtp and S2 = xyaxbacsl, the substrings axabcs in S1 and axbacs in S2 are very similar. The problem of finding similar substrings is the local alignment problem. Local alignment is extensively used in computational biology to find regions of similarity in different biological sequences. Similar genetic sequences are identified by computing the local alignment of...

متن کامل

Fast 3D shape screening of large chemical databases through alignment-recycling

BACKGROUND Large chemical databases require fast, efficient, and simple ways of looking for similar structures. Although such tasks are now fairly well resolved for graph-based similarity queries, they remain an issue for 3D approaches, particularly for those based on 3D shape overlays. Inspired by a recent technique developed to compare molecular shapes, we designed a hybrid methodology, align...

متن کامل

Uncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm

Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...

متن کامل

Hierarchical Framework for Shape Correspondence

Detecting similarity between non-rigid shapes is one of the fundamental problems in computer vision. In order to measure the similarity the shapes must first be aligned. As opposite to rigid alignment that can be parameterized using a small number of unknowns representing rotations, reflections and translations, non-rigid alignment is not easily parameterized. Majority of the methods addressing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The annals of applied statistics

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2013